STUDIEN ZUM VORGANG DER WASSERSTOFFÜBERTRAGUNG 22¹
ELEKTROCHEMISCHE HYDRODIMERISIERUNG VON SCHIFF-BASEN AN DER QUECKSILBERKATHODE
L. Horner und D.H. Skaletz

Aus dem Institut für Organische Chemie der Universität Mainz

(Received in Germany 27 January 1970; received in UK for publication 17 February 1970)

DIE der Pinakolbildung aus Aldehyden und Ketonen² analoge bimolekulare Reduktion von Schiff-Basen nach (1)

(1)
$$2 R-C=\overline{N}-R'+2 e^{-}+2 H^{+} \longrightarrow \begin{array}{c} H & H \\ | & | \\ R-C-C-R \\ | & | \\ |NH & |NH \\ | & | \\ R' & R' \end{array}$$
 D,L- und meso-

zu N,N'-disubstituierten Äthylendiaminderivaten auf elektrochemischem Weg wurde 1912 erstmalig beschrieben³. 1968 berichteten Matsuoka und Mitarb.⁴ erneut über die elektrochemische Hydrodimerisierung einer Schiff-Base.

Polarographische, cyclisch-voltametrische und ESR-spektroskopische Untersuchungen^{5,6,7} lassen den **S**chluß zu, daß die Hydrodimerisierung nach (2) abläuft:

Die stets als Nebenreaktion ablaufende Reduktion der Schiff-Basen zu sekundären Aminen kann entweder nach (3)

(3)
$$R-\overset{H}{\varsigma}-\overset{e}{\underline{N}}-R'+e^{-} \xleftarrow{E_2} \xrightarrow{R-\overset{H}{\varsigma}-\overset{e}{\underline{N}}-R'}$$
oder nach (4)
$$H \xrightarrow{R-\overset{\bullet}{\varsigma}-\overset{\bullet}{\underline{N}}-R'}+e^{-} \xleftarrow{E_3} \xrightarrow{R-\overset{\bullet}{\varsigma}-\overset{\bullet}{\underline{N}}-R'}$$

$$R-\overset{\bullet}{\varsigma}-\overset{\bullet}{\underline{N}}-R'+e^{-} \xleftarrow{E_3} \xrightarrow{R-\overset{\bullet}{\varsigma}-\overset{\bullet}{\underline{N}}-R'}$$

erfolgen, wobei E_3 positiver als E_1 liegt 8 (E_1 - E_3 \Longrightarrow 0,3 V)

Folgende optimalen Reaktionsbedingungen wurden gefunden: Temperatur: 65° C

Lösungsmittel: Gemisch aus Xthanol, Essigsäuremethylester - Wasser: 5:3:1

Strommenge: 1 Faraday/Mol Schiff-Base; Stromdichte: ca. $1.0 \cdot 10^{-2}$ A/cm²;

Substratkonzentration: ca. 0,1 Mol / 100 g Katholyt; Konzentration des Tetran-butyl-ammoniumbromids: 25 mMol/100 g Katholyt. Kräftiges Rühren der Quecksilberoberfläche ist vorteilhaft. Ober die dargestellten Hydrodimeren orientiert die folgende Tabelle:

	H H R-C- <u>N</u> -R' 9,10 - R-C-N-R' H H	Schmp. ^O C meso- u. D,L- gemisch ¹¹	a) Ausbeute an reinem meso-D,L-gemischb) Stromausbeute
1	R = Pheny1 R' = p-Toly1	138-165 (MeOH)	47.4
2	R = Pheny1 R' = Pheny1	135-137 (MeOH)	45
3	R = p-Tolyl R' = Phenyl	64.5-76 (Petrol- äther)	36
4	R = p-Tolyl R' = p-Tolyl	150-160 (EtOH)	66.5
5	R = Phenyl R' = Benzyl	150-151 (EtOH)	36.6
6	R = Pheny1 R' = Cyclohexy1	107-113 (EtOH)	63.8
7	R = Anisyl R' = Benzyl	165-168 (EtOH)	25.2 ¹²
8	R = Anisyl R' = Cyclohexyl	96-112 (MeOH)	62.0
9	R = p-C1-Phenyl R' = Benzyl	164-167 (EtOH)	22.6 ¹²
10	R = p-C1-Pheny1 R' = Cyclohexy1	176.5-183 (EtOH)	36.1

Zur Stereochemie der Hydrodimeren

NMR-spektroskopische Untersuchungen der reinen Diastereomeren des N,N'-Di-p-tolyl-1,2-diphenyl-1,2-diaminoäthans ¹³ zeigen die Äquivalenz der beiden benzylischen Protonen, die sowohl in der meso- als auch in der D,L-Form als scharfes Singulett bei 4.91 bzw. 4.53 PPM erscheinen. (CHCl₃; TMS als innerer Standard). Das Isomerengemisch aus der Elektrolyse zeigt beide Signale. Aus ihren Intensitäten wurde das Diastereomerenverhältnis meso:D,L bestimmt und zu etwa 1:1 gefunden. Dieses Verhältnis wurde auch bei den anderen rein aromatisch substituierten Hydrodimeren festgestellt.

Auch im IR-Spektrum unterscheiden sich meso- und D,L-Form, wie am Beispiel des N,N'-Di-p-tolyl-1,2-diphenyl-1,2-diaminoäthans demonstriert werden soll: NH-Banden für die meso-Verbindung (Schmp. 180-181°)¹⁴: 3380 cm⁻¹; für die D,L-Verbindung (Schmp. 140-143°): 3320. Im Diastereomerengemisch, das bei der Elektrolyse entsteht, (Schmp. 138-165°) zeigen die NH-Banden etwa die gleiche Intensität.

Bei der gemeinsamen Elektrolyse von Schiff-Basen mit Carbonylverbindungen ähnlichen Reduktionspotentials entstehen Aminoalkohole, die chromatographisch getrennt werden können.

Die Hydrodimeren kondensieren in bekannter Weise mit Formaldehyd zu Imidazolinen 15, mit Phosgen zu Imidazolidonen 16.

1106 No.13

Literatur und Bemerkungen

- ¹ 21. Mitteil. L. Horner und H. Neumann, Chem. Ber. 102, 3953 (1969)
- ² F.D.Popp und H.P.Schultz, Chem.Reviews 62, 19 (1962)
- ³ H.D.Law, J.chem.Soc.(London) 101, 154 (1912)
- ⁴ Matsuoka, Manabe et al. C.A. 70, 25 176 (1969); Denki Kakagu <u>36</u>, 369 (1968)
- ⁵ J.M.W.Scott und W.H.Jura, Canad.J.Chem. 45, 2375 (1967)
- ⁶ P.Martinet, J.Simonet und J.Tendil, C.R.hebd.Seances Acad.Sci., 268, 303(1969)
- 7 A.Mesli und J.Tirouflet, ibid., 267, 838 (1968)
- 8 A.J.Fry und R.G.Reed, J.Amer.chem.Soc. 91, 6448 (1969)
- 9 A.Padwa, W.Bergmark und D.Pashayan, J.Amer.chem.Soc. 90, 2653 (1969)
- 10 W. Stühmer und G.Meßwarb, Arch.Pharmaz. 286, 221 (1953)
- 11 Bie Hydrodimeren sind farblose, kristalline Substanzen
- 12 D,L-Form läßt sich schwierig von sekundärem Amin abtrennen.
- 13 R.Jaunin, Helv.chim.Acta 39, 111 (1956)
- 14 Sadtler-Katalog Nr. 14377
- 15 H. Wanzlick und W. Löchel, Chem. Ber. 86, 1463 (1953)
- W.R.Boon, J.chem.Soc. (London) 1947, 315